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“FILLING IN THE GAPS” ISN’T UNIQUE TO ALGORITHMS



STREET-LEVEL BUREAUCRATS
LIKEWISE FILL IN THE GAPS BETWEEN POLICIES AND

IMPLEMENTATION
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STREET-LEVEL BUREAUCRATS

They’re the part of a bureaucratic institution that the public interacts with.
police
teachers
judges
clerks
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A DEEP WELL TO DRAW FROM

Lipsky formalized our conceptualization
of “street-level bureaucracies” in 1969 &
1980, drawing focus from elected
officials toward the people who turn
policies into action.



WHERE POWER BECOMES MANIFEST

Street-level bureaucrats are enormously influential

• street-level bureaucrats mediate the organizations’ success

• street-level bureaucrats must make in-the-moment decisions

• street-level bureaucrats have substantial domain expertise
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CHECKERED HISTORY

Many bureaucrats believe in the causes of the organizations in which they work,
and do so with an earnest effort to provide the institution’s services.

However, bureaucrats also instantiate and reify prejudicial biases and
power (Corbett-Davies et al. 2017).

For now, we will focus on the structural roles bureaucrats serve, and discuss
their challenges later.
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STREET-LEVEL ALGORITHMS

Street-level algorithms are algorithmic systems that directly interact with and
make decisions about people in a sociotechnical system.

They classify and recommend:

• the order and visibility of posts on your news feed

(Rader and Gray 2015;
Bucher 2017; Bozdag and Hoven 2015; Eslami et al. 2016; Eslami et al. 2015)

• eligibility to contribute to peer production sites

(Panciera, Halfaker, and
Terveen 2009; Geiger 2018)

• where and when we get work

(Lee et al. 2015)

Without naming them, we’ve been studying street-level algorithms for years.
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REFLEXIVITY

Street-level bureaucrats … at least [have] to be
open to the possibility that each client presents spe-
cial circumstances and opportunities that may re-
quire fresh thinking and flexible action.

– Lipsky, 1980
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YOUTUBE DEMONETIZATION ALGORITHM

YouTube enforces many of its policies algorithmically:

• copyright
• advertiser guidelines

• controversial issues
• dangerous substances
• harmful acts
• inappropriate language
• sexually suggestive content

YouTubers can still upload, but the algorithm determines their eligibility to earn

Demonetized videos earn nomoney for the YouTuber.
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BUT THE DEMONETIZATION ALGORITHM MAKES MISTAKES



LGBTQ YOUTUBERS GETTING DEMONETIZED

Videos about gender identity are not
necessarily about sex at all.

The algorithm learned to associate
gendered terms with sex because the
training data had that association.

In these videos, that association
doesn’t exist.



LGBTQ YOUTUBERS GETTING DEMONETIZED
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FALSE NEGATIVES

Videos of children’s
character Peppa Pig
being tortured in the
dentist’s office were, by
all appearances,
monetized normally

In some cases they
were included in
YouTube Kids
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Street performances
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Judgment
Is this performance pushing
the envelope, or does it

cross a line?

Bureaucrat
Police tasked with
enforcing busking
ordinances in cities



Behavior
Millions of street

performances

Judgment

Algorithm
quasi-police force tasked
with making street
performance judgments
at massive scale

Ideally

In reality

Recognize new situations and navigate them culturally and
contextually appropriately
Trained on yesterday’s data, before today’s cultural
movements began
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TAKEAWAYS

It’s unlikely we can avoid these problems algorithmically

• Having more training data would not have helped us avoid this problem

• Experimentation and provocation is often the point of performance and art

• street-level algorithms can only adapt after they make the wrong call
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ON-DEMAND WORK

Algorithmic systems determine the quality of
on-demand workers’ work and whether
workers get paid.

These systems have been accused of wage
theft (Dombrowski, Alvarado Garcia, and
Despard 2017; McInnis et al. 2016).

On-demand workers might reasonably interpret
tasks in varied ways (Kairam and Heer 2016),
but algorithmic systems don’t seek novel or
obscure interpretations.

Clusters of legitimate workers’ differing

interpretations of the same task

(Kairam and Heer 2016)
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Behavior
factory workers

Judgment
Is the factory worker doing
the work correctly, or do
they need assistance?

Bureaucrat
factory foremen
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Algorithm
foreman tasked almost
exclusively with
accepting or rejecting
work

Ideally

In reality

Acknowledge when workers need to deviate from script,
provide necessary resources, and give feedback
Frustratingly inflexible quality control algorithms deter
creative effort and encourage gaming
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TAKEAWAYS

Algorithms can’t cope with novelty, which is what we want from increasingly
complex and creative on-demand work

• Algorithmic foremen can’t distinguish novel answers fromwrong answers

• There’s a catch-22 of training data

• Street-level algorithms here never have the data they need to distinguish
between bad and novel
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Algorithmic systems predict whether
defendants are likely to appear at their court
date, recommending the level at which to set
bail.
These algorithms reflect and amplify racial
biases in society (Buolamwini and Gebru 2018;
Lambrecht and Tucker 2018; Thebault-Spieker,
Terveen, and Hecht 2015).
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Account for the circumstances of defendants’ environments
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TAKEAWAYS

Here we have something new: a street-level bureaucrat interacting with a
street-level algorithm. Bureaucrats can resist or buffer the algorithm’s
recommendations when needed (Christin 2017; Veale, Van Kleek, and Binns
2018).

Even a perfectly fair, transparent, and accountable algorithmwill make errors of
generalization in cases at the margin. Bureaucrats reason by extension from
precedent and case law. How should an algorithm reason?



DESIGN IMPLICATIONS

A theory of street-level algorithms suggests that, when faced with algorithmic
failure, we should look to historical cases of street-level bureaucrats for design
inspiration.

Bureaucratic mechanisms for appeals and justice include:

• Ensuring that the person or system reviewing the appeal does not overlap
with the person or systemwhomade the initial judgment

• Predefined rules for recourse, (e.g. compensating lost income)

• Requirements to publish plain-language descriptions of complex systems



LIMITATIONS AND CONCERNS

Street-level bureaucrats reflect and exercise discretion to support the goals of
the institution, but that has historically manifested harmfully for all but the
already-empowered, by way of:

• Systematic brutality committed against people of color, trans people, and
other marginalized communities

• Criminalization of disempowered groups.

Howmight computation amplify the positive aspects of bureaucratic reflexivity
and not the negative?

What socio-technical configuration combines street-level bureaucratic and
street-level algorithmic strengths in the most pro-social way?
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